
Theory for the Working Database Programmer
A Historical Approach

Ryan Wisnesky
ryan@conexus.com

Conexus AI

Data Day 2020

Σ a ∆ a Π



Introduction

I In this talk I will take a historical approach to describing seminal
database systems,

I drawing connections to category theory, functional programming, and
database theory,

I with the goal of improving the audience’s computer science
fundamentals.

I Case studies:
I Relational Algebra
I Structural Recursion
I Comprehension Notation
I Lambda Calculus
I Ongoing research on graph query languages (joint with Marko

Rodriguez on mm-adt, and Joshua Shinavier on APG)

I wisnesky.net/dataday.pdf

2 / 23

wisnesky.net/dataday.pdf


Outline

I For each system, we will go over:
I its history
I its definition
I an example
I suggested conclusions about its utility (but draw your own!)
I how it is applied today

I Please ask questions during the talk!

I About me: Stanford undergrad, trained in database theory at IBM
Almaden, programming language theory at Harvard (PhD), and
category theory at MIT (postdoc). My site: wisnesky.net.
Currently I work on the categorical query language CQL at Conexus.
Open-source CQL site: categoricaldata.net.

I If you like this material, consider applying for grad school!

3 / 23

wisnesky.net
categoricaldata.net


Relational Algebra: History

I 1959: Tarski invents the relational model in a footnote in a graduate
textbook on algebraic logic.

I 1969: Codd re-invents the relational model in an IBM journal.

I 1970: The relational model is published in a public journal.

I Initial reaction: “Codd’s concept of data arrangement was seen within
IBM as an ’intellectual curiosity’ at best and, at worst, as undermining
IBM’s existing products.”

I 1977: Oracle Founded.

I 1981: Codd wins Turing Award.

I 1983: IBM DB2 launches, and goes on to become one of IBM’s most
successful products.

I Today: civilization runs on SQL.

4 / 23



Relational Algebra: Definition and Example

I A relational schema consists of a set of relation names and their
arities (number of columns).
I Example: Friend of arity 2, Parents of arity 3.

I A relational database instance (on a particular schema) consists of a
set D, called the domain, and for each relation name of arity n, an
n-ary relation on D.
I Example: D = String, Friend = {(Alice,Bob), (Bob,Charlie)},

Parents = {(Bob,Daniel, Ellen)}
I The relational algebra (on domain D) is the set of operations:

I Select, Project, Cartesian Product, Union, Difference.

I Codd’s theorem: the relational algebra is equivalent to domain
independent first-order logic queries.

I Domain Independent: {(x, z) | ∃y Friend(x, y) ∧ Friend(y, z)}. Result
depends only on the input data.

I Not Domain Independent: {(x, z) | ¬Friend(x, z)}. Result depends on
the domain D.

5 / 23



Relational Algebra: Conclusions

I Claim: the relational algebra succeeded as a query language because
it is first-order logic.

I Key Theoretical Results:

I query evaluation in P (data complexity)
I equivalence of conjunctive queries (select/from/where) in NP
I query minimization and composition (view unfolding) algorithms
I efficient algorithms using hash-tables, b-trees, etc.

I Caveat: many “relational” systems deviate from the relational model.
I example: NULL = NULL is not true in SQL (SQL uses 3-valued logic)

I Caveat: checking domain independence is undecidable.

6 / 23



Interregnum

I Killer app in 1978: replacing graph (network) data models.

I 1980s-1990s: Cambrian explosion of data models: object-oriented,
object-relational, datalog, many others.

I 1990s: relational algebra proves insufficient for querying the new data
models, and researchers turn to structural recursion (next).

I Killer app in 2020: provide a baseline of expressive power, and serve
as an Lingua Franca.

7 / 23



Structural Recursion: History

I 1888: First use of primitive recursion to define a function, by Dedekind

I 1923: Skolem invents primitive recursive arithmetic (PRA)

I 1941: Haskell Curry shows that PRA does not require logical
quantifiers or connectives, only equations

I 1974: Goguen generalizes primitive recursion to structural recursion
over inductively defined data types

I 1992: Tannen and others propose structural recursion as an
implementation technique for object-oriented databases, relational
databases, and others, and it remains widely used today.

I 1994: The “iterator model” of SQL evaluation is popularized by
Graefe’s Volcano system and remains widely used today.

8 / 23



Structural Recursion: Example

I In data processing, “lists of t”, where t is a known type such String or
Int, is the most common inductive data type, and structural recursion
is called “fold”, or sometimes, “reduce”. In Haskell:

data IntList = Nil | Cons Int IntList

fold :: a -> (Int -> a -> a) -> IntList -> a

fold v f Nil = v

fold v f (Cons h l) = f h (fold v f l)

sum :: IntList -> Int

sum = fold (+) 0

sum (Cons 5 (Cons 7 (Cons 9 Nil))) = 5 + (7 + (9 + 0))

9 / 23



Structural Recursion: Definition

I An inductive set uniquely builds its elements in terms of other
elements in a well-founded way. For example, one definition of the set
N of natural numbers is:

I 1 is in N.
I If n is in N then n+ 1 is in N.
I N is the smallest set satisfying the above.

I Inductive sets can be recursively processed according to each clause
above, for example, one definition of multiplication by 9 is:
I 1× 9 = 9
I (n+ 1)× 9 = n+ (n× 9)
I multiplication by 9 is unique function N→ N satisfying the above

I Associated proof principle: to prove P holds for all natural numbers,
prove P (1) and that P (n) implies P (n+ 1).

10 / 23



Structural Recursion

I Key Theoretical Results:

I Equivalence of structural and primitive recursion.
I “fold fusion”: fold f ◦ fold g = fold (f ◦ g), and other optimizations.
I Most algorithms are primitive recursive.

I Caveat: Most collection types are not inductive! For example, bags
are not inductively defined, but can be processed as though they are
lists by those functions that ignore order and repetition in the list.

I Caveat: optimization in practice requires many variants of structural
recursion that vary in their runtime properties
I foldl vs foldr
I wiki.haskell.org/Zygohistomorphic prepromorphisms

I To get the best of structural recursion but without having to check
well-formedness of user-defined recursions, researchers proposed using
comprehensions as a user-facing query language on top of structural
recursion (next).

11 / 23



Comprehension Notation: History

I 1901: Russell discovers that unrestricted set comprehension is
inconsistent: let R = {x | x /∈ x}. Then R ∈ R if and only if R /∈ R.

I 1922: Bounded comprehension notation placed on firm footing with
invention of ZFC set theory.

I 1958: Unbounded comprehension notation placed on firm footing with
invention of categorical topos theory.

I 1982: Moggi invents monadic do-notation, a generalization of
comprehension notation suitable for many collections types.

I 1992: Peyton-Jones and Wadler connect do-notation to I/O, and the
notation remains in wide use today.

I 1994: Wong defines the nested relational algebra as comprehension
notation in the set monad, and the notation remains in wide use today.

12 / 23



Comprehension Notation: Example and Definition

I Example: let S be a set of integers. Then

{a+ b | a ∈ S, b ∈ S, a 6= b}

traverses S twice and returns a set containing the sum of all
non-equal elements of S.

I When L = {2, 3}, we have C = {5}.
I Comprehension syntax can be implemented with the primitives:

map : (a→ b)→ Set a→ Set b

filter : (a→ Bool)→ Set a→ Set b

empty : Set a singleton : a→ Set a

union : Set (Set a)→ Set a

tensor : a→ Set b→ Set (a, b)

13 / 23



Comprehension Notation: Conclusions

I Claim: comprehension notation succeeded as a query language
because it literally is mathematical notation.

I Key Theoretical Results:

I Normal form for comprehensions.
I Equivalent to nested relational algebra.
I Translation from comprehensions to structural recursion.
I Works uniformly over most collection types (list, bag, set, etc)

I “Caveats”: join is not a primitive; cannot aggregate.

I Implemented by most high-level programming languages (Python,
Java, Haskell, etc) and under the hood in many data migration and
integration systems (eg IBM’s HIL)

I Next up: how to embed comprehensions in general purpose languages
(leads to λ-calculus).

14 / 23



λ-Calculus: History

I 1932: Church introduces a predecessor to λ-calculus and proposes it
as a logic.

I 1935: Kleene and Rosser show this system is logically inconsistent.

I 1936: Church isolates the portion relevant to computation, and calls it
the untyped λ-calculus.

I 1940: Church introduces a weaker, but logically consistent system,
called the simply typed λ-calculus.

I 1970: Scott invents the first non-trivial model of untyped λ-calculus.

I 1979: Martin-Lof invents dependent type theory.

I 1990: Haskell 1.0 released.

I 1980s-1990s: Intense work on implementation of many λ-calculi,
which remain the cornerstone of programming languages to this day.

15 / 23



λ-Calculus: Definition and Examples

I In this talk we will describe untyped λ-calculus, but typed λ-calculus
is much easier to work with formally.

I A term is inductively defined as either:

I a variable, such as x or y, or
I an application of a term f to a term g, written fg, or
I an abstraction of a term f over a variable x, written λx.f .

I Caveat: we must not distinguish terms that differ only by names of
bound variables, e.g. λx.x = λy.y.

I A single equation called β-reduction provides computation:

(λx.f)g = f [x 7→ g]

where f [x 7→ g] indicates the substitution of g for x in f .
I Examples:

I identity function: λx.x
I identity function applied to itself: (λx.x)(λx.x) = λx.x
I Y -combinator: λf.(λx.f(xx))(λx.f(xx)). We have Y (g) = g

16 / 23



λ-calculus: Discussion

I Key Theoretical Results:

I Untyped λ-calculus is Turing complete; simply typed λ-calculus is not.
I Proofs in various logics can be represented in various typed λ-calculi

(Curry-Howard isomorphism).
I λ-calculi are the internal languages of cartesian closed categories.
I λ-calculi admit eager and lazy evaluation strategies and have equivalent

variable-free forms (combinatory logics).

I Application: adding comprehension notation to a λ-calculus results in
a language-integrated query system, such as Microsoft LINQ, Data
Parallel Haskell, Monad Comprehension Calculus, and more.

I “Caveat”: Programming languages that contain side effects, such as
I/O, can’t easily be modeled in λ-calculus because functions in these
languages need not be functions in the sense of math. Example: a
fire−missiles function can run out of missiles.

I Conclusion: almost all programming languages extend a λ-calculus or
variable-free equivalent.

17 / 23



Current Research on Graphs

I As a data model, graphs haven’t received as much attention from
academics as the data models discussed today.

I Speculation: this is because most graphs are not inductive, and a
(the?) natural query language for them is based on stateful edge
walks a la Apache Tinkerpop.

I Current work:
I Marko Rodriguez and I are formalizing gremlin as a λ-calculus and are

providing a sound mathematical basis for mm-adt. Key results: use of
abstract interpretation and equational re-writing

I Joshua Shinavier and I formalized Uber’s algebraic property graph data
model (APG) using category theory and it may be included in
Tinkerpop 4. Paper URL: arxiv.org/abs/1909.04881

I APG and mm-adt are fragments of a more general approach to data
based on category theory, which we at Conexus have been exploring via
our categorical query language CQL. categoricaldata.net

18 / 23

arxiv.org/abs/1909.04881
categoricaldata.net


Category Theory

I Category theory was invented in 1946 to migrate theorems from one
area of mathematics to another, so it is a very natural language
with which to describe migrating data from one schema to another.

I A category C consists of
I a set of objects, Ob(C)
I forall X,Y ∈ Ob(C), a set C(X,Y ) of morphisms a.k.a arrows
I forall X ∈ Ob(C), a morphism id ∈ C(X,X)
I forall X,Y, Z ∈ Ob(C), a function ◦ : C(Y,Z)×C(X,Y )→ C(X,Z) s.t.

f ◦ id = f id ◦ f = f (f ◦ g) ◦ h = f ◦ (g ◦ h)

I The category Set has sets as objects and functions as arrows, and the
category Haskell has types as objects and programs as arrows.

19 / 23



Categorical Schemas and Instances

Emp
•

works //

manager
��

first

��
last

��

Dept
•

secretary
oo

name

zz
String
•

[manager.works] = [works] [secretary.works] = []

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 101 CS

x02 102 Math

String

ID

Al

Bob

. . .

20 / 23



A CQL Schema: Code

entities

Emp

Dept

foreign keys

manager : Emp -> Emp

works : Emp -> Dept

secretary : Dept -> Emp

attributes

first last : Emp -> string

name : Dept -> string

path equations

manager.works = works

secretary.works = Department

21 / 23



The CQL IDE

22 / 23



Summary

I We discussed four seminal systems:
I Relational Algebra
I Structural Recursion
I Comprehension Notation
I Lambda Calculus

I and three next-generation systems based on category theory:

I The categorical query language CQL (Conexus)
I Algebraic Property Graphs (Uber)
I mm-adt: A multi-model abstract data type (RRedux)

I Get involved! All inquiries welcome at ryan@conexus.com.

23 / 23


